Bone ingrowth into two porous ceramics with different pore sizes: an experimental study.

نویسندگان

  • Laurent Galois
  • Didier Mainard
چکیده

Many properties of porous calcium phosphate ceramics have been described, but how pore size influences bony integration of various porous ceramics remains unclear. This study was performed to quantify the bony ingrowth and biodegradability of two porous calcium phosphate ceramics with four different pore size ranges (45-80 microm, 80-140 microm, 140-200 microm, and 200-250 microm). Hydroxyapatite (HA) and beta-tricalcium phosphate (TCP) cylinders were implanted into the femoral condyles of rabbits and were left in situ for up to 12 months. The percentage of bone ingrowth and the depth of ingrowth within the pores were determined. Biodegradability of the implants was also evaluated. Bone ingrowth occurred at a higher rate into the TCP than into the HA ceramics with the same pore size ranges. The amount of newly formed bone was statistically smaller (p < 0.05) into ceramics with 45-80 microm pore size than with larger pore size, whatever the implantation time for HA and until four months for TCP. No statistical difference was noted between the three highest pore size ranges. No implant degradation was noted up to four months. Our results suggest that a pore size above 80 microm improves bony ingrowth in both HA and TCP ceramics. Bone formation was higher in the TCP than in the HA implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of ceramics for bone replacement. A comparative study of three different porous ceramics.

Ceramics have many properties which might make them suitable alternatives to bone grafts. This present study was done to find a suitable biodegradable porous ceramic for human bone replacement. Three different porous ceramics (calcium aluminate, calcium hydroxyapatite and tricalcium phosphate), with interlinked pores of two size ranges (150 to 210 micron), were implanted into the skulls of rats...

متن کامل

Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants.

A porous structure comprises pores and pore throats with a complex three-dimensional (3D) network structure, and many investigators have described the relationship between average pore size and the amount of bone ingrowth. However, the influence of network structure or pore throats for tissue ingrowth has rarely been discussed. Four types of bioactive porous titanium implants with different por...

متن کامل

Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits.

A porous material for bone ingrowth with adequate pore structure and appropriate mechanical properties has long been sought as the ideal bone-implant interface. This study aimed to assess in vivo the influence of three types of porous titanium implant on the new bone ingrowth. The implants were produced by means of a powder metallurgy technique with different porosities and pore sizes: Group 1 ...

متن کامل

Local deformation behavior of surface porous polyether-ether-ketone.

Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this s...

متن کامل

In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects

Metallic implants with a low effective modulus can provide early load-bearing and reduce stress shielding, which is favorable for increasing in vivo life-span. In this research, porous Ti6Al4V scaffolds with three pore sizes (300~400, 400~500, and 500~700 μm) were manufactured by Electron Beam Melting, with an elastic modulus range of 3.7 to 1.7 GPa. Cytocompatibility in vitro and osseointegrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta orthopaedica Belgica

دوره 70 6  شماره 

صفحات  -

تاریخ انتشار 2004